Written By Michael Greger M.D. FACLM on November 28th, 2019
The tight correlation among countries between the incidence of type 1 diabetes in children and cow’s milk consumption didn’t account for Iceland. Indeed, studies correlating dairy intake in children and adolescents with the incidence of type 1 diabetes deliberately excluded the Icelandic data. Why? Is it because of genetics? Perhaps, yes and no. The people of Iceland are similar genetically to other Nordic countries, but their cows are not. As I discuss in my video Does Bovine Insulin in Milk Trigger Type 1 Diabetes?, there are two main types of the cow milk protein casein: A1 and A2. Icelandic cattle, who “have been isolated from interbreeding with other cattle breeds for over 1,100 years,” are unusual in that they produce mostly A2 milk, which may explain the lower incidence of type 1 diabetes in Iceland.
Unlike A2 casein, A1 casein breaks down into casomorphin, which has opioid properties that may alter immune function, perhaps increasing susceptibility to infections that may themselves trigger type 1 diabetes. That’s what’s in the milk from the classic black-and-white patterned Holstein cows, who make up about 95 percent of the U.S. dairy herd and much of the global herd—A1 casein. This issue has even caused dairy boards to begin taking out patents on methods for selecting “nondiabetogenic” milk to avoid triggering of Type 1 diabetes. Indeed, looking only at A1 casein consumption certainly restores that tight linear relationship between milk intake and type 1 diabetes and you can see at 1:47 in the video.
These so-called ecological, or country-by-country, studies, however, primarily serve to suggestpossibilities that then need to be put to the test. For example, a study was designed where hundreds of siblings of type 1 diabetics were followed for about ten years and found that those who drank a lot of milk did have about five times the risk of coming down with the disease, too. By the mid-1990s, more than a dozen such studies were done.
Overall, researchers found that early cow’s milk exposure appears to increase the risk of type 1 diabetes by about 50 percent. Those data were enough for the American Academy of Pediatrics to decide that “cow’s milk protein may be an important factor” in the initiation of the process that destroys our insulin-producing cells. The organization went on to say that the avoidance of cow’s milk protein may reduce or delay the onset of type 1 diabetes. As such, the American Academy of Pediatrics emphasizes that breast milk is best and, for those at higher risk of the disease, strongly encourages the avoidance of products containing cow’s milk protein that is intact, as opposed to hydrolyzed formula where the milk proteins are broken up into tiny pieces.
Typically, hydrolyzed formula is given to children with dairy allergies and could potentially make it less risky, but we don’t know until we put it to the test. Based on the population studies and meta-analyses of antibody studies, which suggested that “cow’s milk may serve as a trigger of Type 1 diabetes,” a pilot study was initiated the following year. Researchers wanted to see if babies at high genetic risk for the disease would be less likely to develop antibodies that would then attack their own pancreas if they drank hydrolyzed casein—that is, casein that was chopped up. The hydrolyzed formula did seem to reduce the appearance of at least one autoimmune antibody, but not two or more, which is much more predictive of the development of the disease.
Nevertheless, that was enough for the investigators to embark on the ambitious Trial to Reduce Incidence of Diabetes in Genetically at Risk, also known as the TRIGR study. This multinational, randomized prospective trial involved randomizing thousands of newborns across 15 countries. In 2010, preliminary data suggested the hydrolyzed formula may have helped, but they didn’t quite reach statistical significance, approximately meaning there was greater than a 1 in 20 chance the findings could have just been a fluke. Indeed, when the final autoimmune antibody results were published, the special hydrolyzed formula didn’t seem to help at all.
The researchers only looked at a special group of children, though—ones who were at high genetic risk with diabetes running in the family—whereas the great majority of children who get type 1 diabetes do not have any afflicted close relative. Perhaps most importantly, however, as the researchers themselves emphasized, their study wasn’t designed to test whether cow’s milk is or is not a trigger for the disease. Instead, it aimed to analyze the potential effects of the hydrolyzed casein formula. Maybe it’s not the casein, though. Maybe it’s the bovine insulin.
Insulin autoantibodies—antibodies our body produces to attack our own insulin—often appear as the first sign in prediabetic children. “Because cow’s milk contains bovine insulin,” around the same time researchers were looking into casein, another team “followed the development of insulin-binding antibodies in children fed with cow’s milk formula.” They found significantly more antibodies to bovine insulin in the cow’s milk formula group compared to the exclusively breastfed group, who may have only been exposed to cow proteins through their mom’s breast milk (if their mothers consumed dairy). Furthermore, the bovine antibodies cross-reacted with human insulin, potentially being that caught-in-the-crossfire cause triggering at least some cases of type 1 diabetes.
Of course, we can’t know for sure until we put it to the test. Researchers ran another randomized, double-blind trial, but, this time, tried a cow’s milk formula from which the bovine insulin had been removed. And, indeed, without the bovine insulin exposure, the children built up significantly fewer autoimmune antibodies. What we don’t know yet is whether this will translate into fewer cases of diabetes.